Preview

Problems of Particularly Dangerous Infections

Advanced search

THE ROLE OF YERSINIA PESTIS RESIDENT PLASMIDS PMT1, PCD1, AND PPCP1 IN THE PRODUCTION OF LIPOPOLYSACCHARIDE EXTRACELLULAR FORM

https://doi.org/10.21055/0370-1069-2017-3-85-89

Abstract

Objective of the study is to investigate the role of resident plasmids pMT1, pCD1, and pPCP1 in the production of extracellular form of Yersinia pestis lipopolysaccharide (LPS).

Materials and methods. The experiments have been performed using Y. pestis strain EV76 (pMT1, pCD1, pPCP1), carrying the whole plasmid set, as well as plasmid-free Y. pestis variant EV76 (pMT1-, pCD1-, pPCP1-), and isogenic clones, harbouring only one plasmid: Y. pestis EV76 (pMT1); Y. pestis EV76 (pCD1); Y. pestis EV76 (pPCP1). The presence of extracellular LPS in the incubation medium of Y. pestis EV76 cells has been confirmed by supernatant toxicity for laboratory animals and also by LAL-test reaction.

Results and conclusions. It has been established that LPS extracellular form is produced by 37 °C Y. pestis EV76 cultures of the initial strain and its variants, carrying pMT1 or pPCP1 plasmid. Plasmid-free cultures and variant harbouring pCPP1 plasmid are deprived of such ability. The results of LAL-test has shown that the process of LPS separation from cell wall membrane into the environment is associated with translocation of proteins encoded by pMT1 and pCD1 plasmids and constitutes a natural form of existence of Y. pestis cells. The involvement of pCD1 plasmid in realization of the toxic potential of Y. pestis LPS has been established for the first time ever. 

About the Authors

E. P. Sokolova
Rostov-on-Don Research Anti-Plague Institute
Russian Federation
117/40, M.Gor`kogo St., Rostov-on-Don, 344002


V. P. Zyuzina
Rostov-on-Don Research Anti-Plague Institute
Russian Federation
117/40, M.Gor`kogo St., Rostov-on-Don, 344002


G. V. Demidova
Rostov-on-Don Research Anti-Plague Institute
Russian Federation
117/40, M.Gor`kogo St., Rostov-on-Don, 344002


O. N. Podladchikova
Rostov-on-Don Research Anti-Plague Institute
Russian Federation
117/40, M.Gor`kogo St., Rostov-on-Don, 344002


V. A. Rykova
Rostov-on-Don Research Anti-Plague Institute
Russian Federation
117/40, M.Gor`kogo St., Rostov-on-Don, 344002


V. I. Tynyanova
Rostov-on-Don Research Anti-Plague Institute
Russian Federation
117/40, M.Gor`kogo St., Rostov-on-Don, 344002


References

1. Anisimov A.P. [Yersinia pestis factors maintaining circulation and persistance of plague agent in ecosystems of natural foci. Communication 1]. Mol. Genet., Mikrobiol. Virusol. 2002; (3):3–23.

2. Byvalov A.A., Ovodov Yu.S. [Immunobiological properties of Yersinia pestis antigens]. Bioorganich. Khim. 2011; 37(4):452–63.

3. Demidova G.V., Sokolova E.P., Zyuzina V.P., Rykova V.A., Morozova I.V., Podladchikova O.N., Tynyanova V.I. [The influence of extrachromosomal inheritance elements on Yersinia pestis toxicity]. Zh. Mikrobiol. Epidemiol. Immunobiol. 2017; 2:28–33.

4. Evseeva V.V., Platonov M.E., Kopylov P.Kh., Dentovskaya S.V., Anisimov A.P. [Plasminogen activator of Yersinia pestis microbe]. Infek. i Immunitet. 2015; 5(1):27–36.

5. Kadnikova L.A., Kopylov P.Kh., Dentovskaya S.V., Anisimov A.P. [Capsular antigen of Yersinia pestis micriobe]. Infek. i Immunitet. 2015;5 (3):201–218.

6. Kravtsov A.N., Tynyanova V.I., Zyuzina V.P. [Increase in the virulence of Yersinia pestis after their incubation in hemolyzed human red blood cells]. Zh. Mikrobiol. Epidemiol. Immunobiol. 1993; 4:3–6.

7. Sitnikov A.G., Travina L.A., Bagirova B.L. [LAL-test. Current approaches to determination of pyrogenicity]. M.; 1997. 96 p.

8. Tynyanova V.I., Zyuzina V.P., Demidova G.V., Sokolova E.P. [Specificity of immune-modulating effect of Yersinia pestis endotoxin]. Zh. Mikrobiol. Epidemiol. Immunobiol. 2016; 3:104–12.

9. Dewoody R.S., Merritt P.M., Marketon M.M. Regulation of the Yersinia type III secretion system: traffic control. Front. Cell. Infect. Microbiol. 2013; 3:4. DOI: 10.3389/fcimb.2013.00004.

10. Huang Х.Z., Nicolich M.Р., Linder L.Е. Current trends in plague research: from genomics to virulence. Clin. Med. Res. 2006; 4(3):189–99. DOI: 10.3121/cmr.4.3.189.

11. Matsuura M., Takahashi H., Watanabe H., Saito S., Kawahara K. Immunomodulatory effects of Yersinia pestis lipopolysaccharides on human macrophage. Clin. Vaccine Immunol. 2010; 17(1):49–55. DOI: 10.1128/CVI.00336-09.

12. Montminy S.W., Khan N., McGrath S., Walkowicz M.J., Sharp F., Conlon J.E., Fukase K., Kusumoto S., Sweet C., Miyake K., Akira S., Cotter R.J., Goguen J.D., Lien E. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. J. Nat. Immunol. 2006; 7(10):1066–73. DOI: 10.1038/ni1386.

13. Straus D.C., Atkisson D.L., Garner C.W. Impotance of a lipopolysaccharide-containing extracellular toxic complex in infections produced by Klebsiella pneumoniae. Infect. Immun. 1985; 50(3):787–95.

14. Une T., Brubaker R.R. Roles of V antigen in promoting virulence and immunity in yersiniae. J. Immunol. 1984; 133(4):2226–30.

15. Yang H., Wang T., Tian G., Zhang Q., Wu X., Xin Y., Yan Y., Tan Y., Cao S., Liu W., Cui Y., Yang R., Du Z. Host transcriptomic responses to pneumonic plague reveal that Yersinia pestis inhibits both the initial adaptive and innate immune responses in mice. Int. J. Med. Microbiol. 2017; 307(1):64–74. DOI: 10.1016/j.ijmm.2016.11.002.


Review

For citations:


Sokolova E.P., Zyuzina V.P., Demidova G.V., Podladchikova O.N., Rykova V.A., Tynyanova V.I. THE ROLE OF YERSINIA PESTIS RESIDENT PLASMIDS PMT1, PCD1, AND PPCP1 IN THE PRODUCTION OF LIPOPOLYSACCHARIDE EXTRACELLULAR FORM. Problems of Particularly Dangerous Infections. 2017;(3):85-89. (In Russ.) https://doi.org/10.21055/0370-1069-2017-3-85-89

Views: 909


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)