Genesis of Flea-Born Transmission of Plague Microbe, Yersinia pestis: Two Approachs – Molecular-Genetic and Ecological Ones
https://doi.org/10.21055/0370-1069-2018-2-37-44
Abstract
Two approaches to studying the origin and transmission mechanism of the flea-borne plague pathogen, Yersinia pestis: molecular-genetic and ecological ones – are considered in this review. The molecular genetic approach is based on saltation evolutionary ideology and relies upon the phenomenon of horizontal gene transfer of pla and ymt as critical evolutionary events. Further deletion of some structural and regulatory genes optimized “blockage” mechanism of transmission. The Ecological approach is based on the modern synthetic theory of evolution. It posits a gradual population-genetic transformation in the Marmot – Flea (Marmota sibirica – Oropsylla silantiewi) transitional (heterothermal, heteroimmune) host-parasite system in Late Pleistocene – Holocene epochs. The best prospects for disclosing the mechanisms of evolutionary formation of flea-borne Y. pestis transmission consist in the synthesis of molecular-genetic and ecological approaches.
About the Author
V. V. SuntsovRussian Federation
References
1. Anisimov A.P. [Yersinia pestis factors contributing to cir- culation and preservation of plague agent in eco-systems of natural foci. Communication 1.] Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya. 2002; 3:3–23.
2. Anisimov N.V, Kislichkina A.A., Platonov M.E., Evseeva V.V., Kadnikova L.A., Lipatnikova N.A., Bogun A.G., Dentovskaya S.V., Anisimov A.P. [Concerning the origin of plague agent hypervirulence]. Meditsinskaya Parazitologiya i Parazitarnye Bolezni. 2016; 1:26–32.
3. Kukleva L.M., Boiko A.V. [Plasminogen activator – multi- functional protein of plague pathogen]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2016; 3:13–20. DOI: 10.21055/0370-1069-2016-3-13-20.
4. Kukleva L.M., Protsenko O.A., Kutyrev V.V. [Modern conceptions on the relation between Y. pestis and Yersinia pseudotuberculosis]. Molekulyarnaya Cenetika, Mikrobiologiya i Virusologiya. 2002; 1:3–7.
5. Kutyrev V.V., Eroshenko G.A., Popov N.V., Vidyaeva N.A., Konnov N.P. [Molecular mechanisms of interaction between plague agent and invertebrate animals]. Molekulyarnaya Cenetika, Mikrobiologiya i Virusologiya. 2009; 4:6–13.
6. Lomov Yu.M., Lebedeva S.A., editors. [Variability of Plague Agent and Problems of Its Diagnostics]. Rostov-on-Don: “Antey”; 2009. 512 p.
7. Savostina E.N., Popov Yu.A., Kashtanova T.N., Vinogradova N.A., Plotnikov O.P., Balakhonov S.V. [Genome polymorphism of plague agent strains of the main subspecies]. Molekulyarnaya Cenetika, Mikrobiologiya i Virusologiya. 2009; 4:23–6.
8. Somov G.P., Pokrovsky V.I., Besednova N.N., Antonenko F.F. [Psedotuberculsosis]. 2nd Edition. M.: “Meditsina”; 2001. 256 p.
9. Suntsov V.V. [Recent speciation of plague microbe Yersinia pestis in heterothermal (heterimmune) medium, marmot-flea (Marmota sibirica-Oropsylla silantiewi): biocoenotic prerequisites and pradaptation]. Uspekhi Sovremennoy Biologii. 2016; 136(6):569–583.
10. Suntsov V.V., Suntsova N.I. [Plague. Origin and Evolution of Epizootic System]. M.; 2006. 247 p.
11. Achtman M., Morelli G., Zhu P., Wirth T., Diehl I., Kusecek B., Vogler A.J., Wagner D.M., Allender C.J., Easterday W.R., ChenalFrancisque V., Worsham P., Thomson N.R., Parkhill J., Lindler L.E., Carniel E., Keim P. Microevolution and history of the plague bacillus, Yersinia pestis. Proc. Natl. Acad. Sci. USA. 2004; 101(51):17837–42. DOI: 10.1073/pnas.0408026101.
12. Anisimov A.P. Dentovskaya S.V., Titareva G.M., Bakhteeva I.V., Shaikhutdinova R.Z., Balakhonov S.V., Lindner B., Kocharova N.A., Senchenkova S.N., Holst O., Pier G.B., Knirel Y.A. Intraspecies and temperature-dependent variations in susceptibility of Yersinia pestis to the bactericidal action of serum and to polymyxin B. Inf. Immun. 2005; 73(11):7324–31. DOI:10.1128/IAI.73.11.7324- 7331.2005.
13. Anisimov A.P., Lindler L.E., Pier G.B. Intraspecific Diversity of Yersinia pestis. Clin. Microbiol. Rev. 2004; 17(2):434– 64. DOI: 10.1128/CMR.17.2.434-464.2004.
14. Bouma H.R., Carey H.V., Kroese F.G. Hibernation: the immune system at rest? J. Leukoc. Biol. 2010; 88(4):619–24. DOI:10.1189/jlb.0310174.
15. Carey H.V., Andrews M.T., Martin S.L. Mammalian Hibernation: Cellular and Molecular Responses to Depressed Metabolism and Low Temperature. Physiol. Rev. 2003; 83(4):1153– 81. DOI: 10.1152/physrev.00008.2003.
16. Cathelyn J.S., Ellison D.W., Hinchliffe S.J., Wren B.W., Miller V.L. The RovA regulons of Yersinia enterocolitica and Yersinia pestis are distinct: evidence that many RovA-regulated genes were acquired more recently then the core genome. Mol. Microbiol. 2007; 66:189–205. DOI:10.1111/j.1365-2958.2007.05907.x.
17. Cui Y., Song Y. Genome and Evolution of Yersinia pestis. In: Yang R., Anisimov A., editors. Yersinia pestis: Retrospective and Perspective. Dordrecht: Springer; 2016. P. 171–92. DOI 10.1007/978- 94-024-0890-4_1.
18. Czaran T.L., Hoekstra R.F. Killer-sensitive coexistence in metapopulations of micro-organisms. Proc. Biol. Sci. 2003; 270(1522):1373–78. DOI: 10.1098/rspb.2003.2338.
19. Diggle S.P. Microbial communication and virulence: lessons from evolutionary theory. Microbiology. 2010; 156(Pt. 12):3503–12. DOI: 10.1099/mic.0.045179-0.
20. Easterday W.R., Kausrud1 K.L., Star B., Heier L., Haley B.J., Ageyev V., Colwell R.R., Stenseth N.C. An additional step in the transmission of Yersinia pestis? ISME J. 2012; 6:231–6. DOI: 10.1038/ismej.2011.105.
21. Eppinger M., Worsham P.L., Nikolich M.P., Riley D.R., Sebastian Y., Mou S., Achtman M., Lindler L.E., Ravel J. Genome Sequence of the Deep-Rooted Yersinia pestis Strain Angola Reveals New Insights into the Evolution and Pangenome of the Plague Bacterium. J. Bacteriol. 2010; 192(6):1685–99. DOI:10.1128/ JB.01518-09.
22. Fukushima H., Matsuda Y., Seki R., Tsubokura M., Takeda N., Shubin F.N., Paik I.K., Zheng X.B. Geographical heterogeneity between Far Eastern and Western countries in prevalence of the virulence plasmid, the superantigen Yersinia pseudotuberculosis-derived mitogen, and the high-pathogenicity island among Yersinia pseudo- tuberculosis strains. J. Clin. Microbiol. 2001; 39(10):3541–7. DOI: 10.1128/JCM.39.10.3541-3547.2001.
23. Guinet F., Avé P., Jones L., Huerre M., Carniel E. Defective innate cell response and lymph node infiltration specify Yersinia pestis infection. PLoS One. 2008; 3:e1688. DOI:10.1371/journal. pone.0001688.
24. Hinnebusch B.J., Bland D.M., Bosio C.F., Jarrett C.O. Comparative Ability of Oropsylla Montana and Xenopsylla cheopis Fleas to Transmit Yersinia pestis by Two Different Mechanisms. PLoS Negl. Trop. Dis. 2017; 11(1):e00052276. DOI:10.1371/journal. pntd.0005276.
25. Hinnebusch B.J., Chouikha I., Sun Y.C. Ecological Opportunity, Evolution, and the Emergence of Flea-Borne Plague. Infect. Immun. 2016; 84(7):1932–40. DOI:10.1128/IAI.00188-16.
26. Hinnebusch B.J. The evolution of flea-borne transmission in Yersinia pestis. Curr. Issues Mol. Biol. 2005; 7(2):197–212.
27. Johnson T.L., Hinnebusch B. J., Boegler K.A., Graham C.B., MacMillan K., Montenieri J.A., Bearden S.W., Gage K.L., Eisen R.J. Yersinia murine toxin is not required for early-phase transmission of Yersinia pestis by Oropsylla montana (Siphonaptera: Ceratophyllidae) or Xenopsylla cheopis (Siphonaptera: Pulicidae). Microbiol. 2014; 160(1):2517–25. DOI: 10.1099/mic.0.082123-0.
28. Li Y., Cui Y., Hauck Y., Platonov M.E., Dai E., Song Y., Guo Z., Pourcel C., Dentovskaya S.V., Anisimov A.P., Yang R., Vergnaud G.. Genotyping and phylogenetic analysis of Yersinia pes- tis by MLVA: insights into the worldwide expansion of Central Asia plague foci. PLoS One. 2009; 4(6):e6000. DOI: 10.1371/journal. pone.0006000.
29. Lorange E.A., Race B.L., Sebbane F., Hinnebusch J. Poor vector competence of fleas and the evolution of hyperviru- lence in Yersinia pestis. J. Infec. Dis. 2005; 191(11):1907–12. DOI: 10.1086/429931.
30. Morelli G. Song Y., Mazzoni C.J., Eppinger M., Roumagnac P., Wagner D.M., Feldkamp M., Kusecek B., Vogler A.J., Li Y., Cui Y., Thomson N.R., Jombart T., Leblois R., Lichtner P., Rahalison L., Petersen J.M., Balloux F., Keim P., Wirth T., Ravel J., Yang R., Carniel E., Achtman M. Yersinia pestis genome sequencing identi- fies patterns of global phylogenetic diversity. Nat. Genet. 2010; 42(12):1140–43. DOI: 10.1038/ng.705.
31. McNally A., Thomson N.R., Reuter S., Wren B.W. Add, stir and reduce: Yersinia spp. as model bacteria for pathogen evolution. Nat. Rev. Microbiol. 2016; 14(3):177–90. DOI: 10.1038/ nrmicro.2015.29.
32. Nuss A.M., Schuster F., Roselius L., Klein J., Bücker R., Herbst K., Heroven A.K., Pisano F., Wittmann C., Münch R., Müller J., Jahn D., Dersch P. A Precise Temperature-Responsive Bistable Switch Controlling Yersinia Virulence. PLoS Pathog. 2016; 12(12):e1006091. DOI: 10.1371/journal.ppat.1006091.
33. Ortmann S., Heldmaier G. Regulation of body temperature and energy requirements of hibernating alpine marmots (Marmota marmota). Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000; 278(3):R698–704. DOI: 10.1152/ajpregu.2000.278.3.R698.
34. Owen L.A., Richards B., Rhodes E.J., Cunningham W. D., Windley B.F., Badamgarav J., Dorjnamjaa D. Relict perma- frost structures in the Gobi of Mongolia: age and significance. J. Quaternary Sci. 1998; 13(6):539–547. DOI: 10.1002/(SICI)1099- 1417(1998110)13:63.0.CO;2-N.
35. Sebbane F., Jarrett C.O., Long D., Hinnebusch B.J. Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc. Natl. Acad. Sci. USA. 2006; 103(14):5526–30. DOI: 10.1073/pnas.0509544103.
36. Skurnik M., Peippo A., Ervela E. Characterization of the O-antigen gene cluster of Yersinia pseudotuberculosis and the cryptic Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. Mol. Microbiol. 2000; 37(2):316–330. DOI: 10.1046/j.1365-2958.2000.01993.x.
37. Sun Y.C., Jarrett C.O., Bosio C.F., Hinnebusch B.J. Retracing the Evolutionary Path that led to Flea-Borne Transmission of Yersinia pestis. Cell Host Microbe. 2014; 15(5):578–86. DOI: 10.1016/j.chom.2014.04.003.
38. Wang X., Zhou D., Qin L., Dai E., Zhang J., Han Y., Guo Z., Song Y., Du Z., Wang J., Wang J., Yang R. Genomic comparison of Yersinia pestis and Yersinia pseudotuberculosis by combination of suppression subtractive hybridization and DNA microarray. Arch. Microbiol. 2006; 186(2):151–9. DOI: 10.1007/s00203-006-0129-1.
39. Williams S.K., Schottoeffer A.M., Montenieri J.A., Holmes J.L., Vetter S.M., Gage K.L., Bearden S.W. Effects of LowTemperature Flea Maintenance on the Transmission of Yersinia pestis by Oropsylla Montana. Vector-borne Zoonotic Dis. 2013; 13(7):17468–78. DOI: 10.1089/vbz.2012.1017.
40. Zhou D., Han Y., Song Y., Huang P., Yang R. Comparative and evolutionary genomics of Yersinia pestis. Microbes Infect. 2004; 6(13):1226–34. DOI: 10.1016/j.micinf.2004.08.002.
41. Zhou D., Han Y., Song Y., Tong Z., Wang J., Guo Z., Pei D., Pang X., Zhai J., Li M., Cui B., Qi Z., Jin L., Dai R., Du Z., Bao J., Zhang X., Yu J., Wang J., Huang P., Yang R. DNA microarray analysis of genome dynamics in Yersinia pestis: insights into bacterial genome microevolution and niche adaptation. J. Bacteriol. 2004; 186(15):5138–46. DOI: 10.1128/JB.186.15.5138-5146.2004.
Review
For citations:
Suntsov V.V. Genesis of Flea-Born Transmission of Plague Microbe, Yersinia pestis: Two Approachs – Molecular-Genetic and Ecological Ones. Problems of Particularly Dangerous Infections. 2018;(2):37-44. (In Russ.) https://doi.org/10.21055/0370-1069-2018-2-37-44