Preview

Проблемы особо опасных инфекций

Расширенный поиск

Роль внеклеточного экзополисахарида в адаптации возбудителя холеры во внешней среде

https://doi.org/10.21055/0370-1069-2010-3(105)-13-19

Полный текст:

Аннотация

В обзоре представлены литературные данные об участии внеклеточного экзополисахарида в формировании морфологически измененных ругозных вариантов холерного вибриона, отличающихся большей устойчивостью к действию неблагоприятных факторов внешней среды, а также генетическим контролем синтеза ругозного экзополисахарида. Кроме того, приведены собственные экспериментальные данные об обнаружении в популяции Vibrio cholerae классического биовара клонов с измененной морфологией колоний (мутные) в результате продукции внеклеточного экзополисахарида и координированным изменением синтеза некоторых важных факторов патогенности (холерного токсина, растворимой гемагглютинин/протеазы, подвижности). Полученные данные позволили высказать предположение о выявлении нового механизма адаптации холерных вибрионов классического биовара при смене среды обитания.

Об авторах

С. П. Заднова
Российский научно-исследовательский противочумный институт «Микроб»
Россия


Н. И. Смирнова
Российский научно-исследовательский противочумный институт «Микроб»
Россия


Список литературы

1. Заднова С.П., Топорков А.В., Исаев Н.Д. Фенотипический анализ штамма Vibrio cholerae Дакка 35 Огава, имеющего гетерогенную популяцию. Журн. микробиол., эпидемиол. и иммунобиол. 2004; 3:86-8.

2. Заднова С.П., Исаев Н.Д., Кутейкин-Тепляков К.Б., Тихонова О.В., Торопыгин И.Ю., Арчаков А.И., Смирнова Н.И. Протеомный анализ двух изогенных вариантов Vibrio cholerae классического биовара с альтернативной экспрессией генов вирулентности. Журн. микробиол., эпидемиол. и иммунобиол. 2006; 3:11-6.

3. Милютин В.Н., Дрожевкина М.С., Ломов Ю.М., Уралева В.С., Либинзон А.Е., Подосинникова Л.С. Механизмы и диапазон изменчивости холерных вибрионов. Ростов н/Д: Ростовское книжное изд-во; 1981. 176 с.

4. Смирнова Н.И., Давыдова Н.И., Ливанова Л.Ф. Картирование генетического детерминанта, определяющего повышенный синтез холерного токсина штамма Vibrio cholerae Дакка 35. Мол. генет., микробиол. и вирусол. 1994; 2:25-28.

5. Смирнова Н.И., Челдышева Н.Б., Горяев А.А., Лозовский Ю.В., Кутырев В.В. Эволюция генома Vibrio cholerae: пути формирования атипичных штаммов. Пробл. особо опасных инф. 2008; 3(97):3-12.

6. Ali A., Johnson J.A., Franco A.A., Metzger D.J., Connell T.D., Morris J.G., Sozhamannan S. Mutations in the extracellular protein secretion pathway genes (eps) interfere with rugose polysaccharide production in and motility of Vibrio cholerae. Infect. Immun. 2000a; 68:1967-74.

7. Ali A., Mahmud Z.H., Morris J.G., Sozhamannan S., Johnson J.A. Sequence analysis of TnphoA insertion sites in Vibrio cholerae mutants defective in rugose polysaccharide production. Infect. Immun. 2000b; 68:6857-64.

8. Ali A., Rashid M.H., Karaolis D.K.R. High-frequency rugose exopolysaccharide production by Vibrio cholerae. Appl. Environ. Microbiol. 2002; 68:5773-8.

9. Ali A., Morris J.G., Johnson J.A. Sugars inhibit expression of the rugose phenotype of Vibrio cholerae. J. Clin. Microbiol. 2005; 43:1426-9.

10. Al-Radhi A.A., Neama J.K., Dosh N.A. Catch up of classical and El-Tor Vibrio cholerae from Kufa river during disappearance of cholera in middle Euphrates area, Iraq. The second conference on the Biology of Vibrios «Vibrio 2007», 28 November - 1 December 2007 Institut Pasteur, Paris, France. Abstract book. Organizing committee D.Mazel, D.Gevers., F.Thompson. France; 2007. Р98. P. 136.

11. Beyhan S., Yildiz F.H. Smooth to rugose phase variation in Vibrio cholerae can be mediated by a single nucleotide change that targets c-di-GMP signaling pathway. Mol. Microbiol. 2007; 63:995-1007.

12. Beyhan S., Bilecen K., Salama S.R., Casper-Lindley C., Yildiz F.H. Regulation of rugosity and biofilm formation in Vibrio cholerae: comparison of VpsT and VpsR regulons and epistasis analysis of vpsT, vpsR, and hapR. J. Bacteriol. 2007; 189:388-402.

13. Bomchil N., Watnick P., Kolter R. Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture. J. Bacteriol. 2003; 185:1384-90.

14. Casper-Lindley C., Yildiz F.H. VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae O1 El Tor. J. Bacteriol. 2004; 186:1574-8.

15. Crutchley M.J. Rugose forms of an El Tor vibrio. J. Gen. Microbiol. 1968; 50(3):7.

16. Epstein P.R.., Ford T.E., Colwell R.R. Marine ecosystems. Lancet. 1993; 342:1216-9.

17. Faruque S.M., Nair G.B. Vibrio cholerae genomics and molecular biology. Norfolk, UK: Caister Academic Press; 2008. P. 111-21.

18. Finkelstein R.A., Boesman-Finkelstein M., Chang Y., Häse C.C. Vibrio cholerae hemagglutinin/protease, colonial variation, virulence and detachment. Infect. Immun. 1992; 60:472-8.

19. Fong J.C.N., Yildiz F.H. The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae. J. Bacteriol. 2007; 189:2319-30.

20. Grau B.L., Henk M.C., Garrison K.L., Oliver B.J., Schulz R.M., O´Reilly K.L., Pettis G.S. Further characterization of Vibrio vulnificus rugose variants and identification of a capsular and rugose exopolysaccharide gene cluster. Infect. Immun. 2008; 76:1485-97.

21. Fong J.C.N., Karplus K., Schoolnik G.K., Yildiz F.H. Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae. J. Bacteriol. 2006; 188:1049-59.

22. Halder K., Das B., Nair G.B., Bhadra R.K. Molecular evidence favouring step-wise evolution of Mozambique Vibrio cholerae O1 El Tor hybrid strain. Microbiology. 2010; 156:99-107.

23. Hammer B.K., Bassler B.L. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 2003; 50:101-4.

24. Haugo A.J., Watnick P.I. Vibrio cholerae CytR is a repressor of biofilm development. Mol. Microbiol. 2002; 45:471-83.

25. Huq A., Sack R.B., Nizam A., Longini I.M., Nair G.B., Ali A. et al. Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh. Appl. Environ. Microbiol. 2005; 56:2370-73.

26. Klose K.E., Novik V., Mekalanos J.J. Identification of multiple sigma54-dependent transcriptional activators in Vibrio cholerae. Bacteriol. 1998; 180:5256-9.

27. Liang W., Silva A.J., Benitez J.A. The cyclic AMP receptor protein modulates colonial morphology in Vibrio cholerae. Appl. Environ. Microbiol. 2007; 73:7482-7.

28. Lim B., Beyhan S., Meir J., Yildiz F.H. Cyclic-diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation. Mol. Microbiol. 2006; 60:331-48.

29. Lim B., Beyhan S., Yildiz F.H. Regulation of Vibrio polysaccharide synthesis and virulence factor production by CdgC, a GGDEF-EAL domain protein, in Vibrio cholerae. J. Bacteriol. 2007; 189:717-29.

30. Nair G.B., Faruque Sh.M., Bhuiyan N.A., Kamruzzaman M., Siddique A.K., Sack D.A. New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh. J. Clin. Microbiol. 2002; 40:3296-9.

31. Matz C., McDougald D., Moreno A.M., Yung P.Y., Yildiz F.H., Kjelleberg S. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc Natl. Acad. Sci. USA. 2005; 102:16819-24.

32. McCarter L.L. OpaR, a homolog of Vibrio harveyi LuxR, controls opacity of Vibrio parahaemolyticus. J. Bacteriol. 1998; 180:3166-73.

33. Miller M.B., Skorupski K., Lenz D.H., Taylor R.K., Bassler B.L. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell. 2002; 110:303-14.

34. Mizunoe Y., Wai S.N., Takade A., Yoshida S.I. Isolation and characterization of rugose form of Vibrio cholerae O139 strain MO10. Infect. Immun. 1999; 67:958-63.

35. Morris J.G., Sztein M.B., Rice E.W., Natano J.P., Losonsky G.A., Panigrahi P., Tacket C.O., Johnson J.A. Vibrio cholerae O1 can assume a chlorine-resistant rugose survival form that is virulent for humans. J. Infect. Dis. 1996; 174:1364-8.

36. Rashid M.H., Rajanna C., Ali A., Karaolis D.K. Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. FEMS Microbiol. Lett. 2003; 227:113-9.

37. Rice E.W., Johnson C.H., Clark R.M., Fox K.R., Reasoner D.J., Dunnigan M.E., Panigrahi P., Johnson J.A., Morris J.S. Chlorine and survival of "rugose" Vibrio cholerae. Lancet. 1992; 340:740.

38. Samadi A.R., Hug M.I., Shahid N., Khan M.U., Eusde A., Rahman A.S.M.M., Yunus M., Faruque A.S.G. Classical Vibrio cholerae biotype displaces El Tor in Bangladesh. Lancet. 1983:805-7.

39. Sandkvist M. Biology of type II secretion. Mol. Microbiol. 2001; 40:271-83.

40. Schauder S., Shokat K., Surette M.G., Bassler B.L. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 2001; 41:463-76.

41. Tamayo R., Schild S., Pratt J.T., Camilli A. Role of cyclic di-GMP during El Tor biotype Vibrio cholerae infection: characterization of the in vivo-induced cyclic di-GMP phosphodiesterase CdpA. Infect. Immun. 2008; 76:1617-27.

42. Wai S.N., Mizunoe Y., Takade A., Kawabata S.I., Yoshida S.I. Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide material that determine colony morphology, stress resistance, and biofilm formation. Appl. Environ. Microbiol. 1998; 64:3648-55.

43. Waters C.M., Lu W., Rabinowitz J.D., Bassler B.L. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J. Bacteriol. 2008; 190:2527-36.

44. Watnick P.I., Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol. 1999; 34:586-95.

45. Watnick P.I., Lauriano C.M., Klose K.E., Croal L., Kolter R. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol. Microbiol. 2001; 39:223-35.

46. Yang M., Frey E.M., Liu Z., Bishar R., Zhu J. The virulence transcriptional activator AphA enhances biofilm formation by Vibrio cholerae by activating expression of the biofilm regulator VpsT. Infect. Immun. 2010; 78:697-703.

47. Yildiz F.H., Schoolnik G.K. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc. Natl. Acad. Sci. USA. 1999; 96:4028-33.

48. Yildiz F.H., Dolganov N.A., Schoolnik G.K. VpsR, a member of the response regulators of the two-component regulatory systems, is required for expression of vps biosynthesis genes and EPS (Etr)-associated phenotypes in Vibrio cholerae O1 El Tor. J. Bacteriol. 2001; 183:1716-26.

49. Yildiz F.H., Lie X.S., Heydorn A., Schoolnik G.K. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol. Microbiol. 2004; 53:497-515.

50. Yildiz F.H., Visick K.L. Vibrio biofilms: so much the same yet so different. Trends Microbiol. 2009; 17:109-18.

51. Zhu J., Miller M.B., Vance R.E., Dziejman M., Bassler B.L., Mekalanos J.J. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA. 2002; 99:3129-34.

52. Zhu J., Mekalanos J.J. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev. Cell. 2003; 5:647-56.


Для цитирования:


Заднова С.П., Смирнова Н.И. Роль внеклеточного экзополисахарида в адаптации возбудителя холеры во внешней среде. Проблемы особо опасных инфекций. 2010;(3(105)):13-19. https://doi.org/10.21055/0370-1069-2010-3(105)-13-19

For citation:


Zadnova S.P., Smirnova N.I. The Role of Extracellular Exopolysaccharide in Cholera Agent Adaptation in the Environment. Problems of Particularly Dangerous Infections. 2010;(3(105)):13-19. (In Russ.) https://doi.org/10.21055/0370-1069-2010-3(105)-13-19

Просмотров: 44


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)