Preview

Problems of Particularly Dangerous Infections

Advanced search

Different siderophores contribute to the high-pathogenicity phenotype in Yersinia

https://doi.org/10.21055/0370-1069-2013-3-58-62

Abstract

capture and transport in bacteria. At least one endogenous siderophore system, yersiniabactin, is known to be involved in iron acquisition in highly virulent Yersiniae . Its inactivation in Y. pestis and Y. enterocolitica subsp. enterocolitica results in significant attenuation of virulence. However, the yersiniabactin is not present in all highly virulent Yersiniae. Indeed, the large group of Y. pseudotuberculosis serotypes O2, O3, O4, O5 as well as serotype O1 Far East Scarlet like fever (FESLF) strains carry an alternative, iron acquisition system, pseudochelin, encoded by the Yersinia non-ribosomal peptide ynp locus. Thus, the yersiniabactin activity is not the only one associated with the high-pathogenicity phenotype of the human pathogenic Yersiniae .

About the Authors

A. Rakin
Max von Pettenkofer-Institute
Russian Federation


D. Garzetti
Max von Pettenkofer-Institute
Russian Federation


References

1. Alikhan N.F., Petty N.K., Ben Zakour N.L., Beatson S.A. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011; 12:402.

2. Aziz R.K., Bartels D., Best A.A., DeJongh M., Disz T., Edwards R.A., Formsma K., Gerdes S., Glass E.M., Kubal M., Meyer F., Olsen G.J., Olson R., Osterman A.L., Overbeek R.A., McNeil L.K., Paarmann D., Paczian T., Parrello B., Pusch G.D., Reich C., Stevens R., Vassieva O., Vonstein V., Wilke A., Zagnitko O. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics. 2008; 9:75.

3. Bearden S.W., Fetherston J.D., Perry R.D. Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect Immun. 1997; 65:1659–68.

4. Carniel E. The Yersinia high-pathogenicity island: an ironuptake island. Microbes Infect. 2001; 3:561–9.

5. de Almeida A.M., Guiyoule A., Guilvout I., Iteman I., Baranton G., Carniel E. Chromosomal irp2 gene in Yersinia: distribution, expression, deletion and impact on virulence. Microb Pathog. 1993; 14:9–21.

6. Eppinger M., Rosovitz M.J., Fricke W.F., Rasko D.A., Kokorina G., Fayolle C., Lindler L.E., Carniel E., Ravel J. The complete genome sequence of Yersinia pseudotuberculosis IP31758, the causative agent of Far East scarlet-like fever. PLoS Genet. 2007; 3(8):e142.

7. Fetherston J.D., Kirillina O., Bobrov A.G., Paulley J.T., Perry R.D. The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague. Infect Immun. 2010; 78:2045–52.

8. Forman S., Paulley J.T., Fetherston J.D., Cheng Y.Q., Perry R.D. Yersinia ironomics: comparison of iron transporters among Yersinia pestis biotypes and its nearest neighbor, Yersinia pseudotuberculosis. Biometals. 2010; 2:275–94.

9. Fukushima H. Molecular epidemiology of Yersinia pseudotuberculosis. Adv. Exp. Med. Biol. 2003; 529:357–8.

10. Gurleva G.G., Domaradskii I.V., Smolikova L.M., Khaliapina E.E., Grigor’ian E.G. [Biological properties of the causative agent of pseudotuberculosis isolated from scarlatina-like fever patients]. Zh. Mikrobiol. Epidemiol. Immunobiol. 1973; 50:125–9.

11. Heesemann J., Hantke K,. Vocke T., Saken E., Rakin A., Stojiljkovic I., Berner R. Virulence of Yersinia enterocolitica is closely associated with siderophore production, expression of an ironrepressible outer membrane polypeptide of 65,000 Da and pesticin sensitivity. Mol. Microbiol. 1993; 8:397–408.

12. Hinchliffe S.J., Isherwood K.E., Stabler R.A., Prentice M.B., Rakin A., Nichols R.A., Oyston P.C., Hinds J., Titball R.W., Wren B.W. Application of DNA Microarrays to Study the Evolutionary Genomics of Yersinia pestis and Yersinia pseudotuberculosis. Genome Res. 2003; 13(9):2018–29.

13. Parkhill J., Wren B.W., Thomson N.R., Titball R.W., Holden M.T., Prentice M.B., Sebaihia M., James K.D., Churcher C., Mungall K.L., Baker S., Basham D., Bentley S.D., Brooks K., Cerdeño-Tárraga A.M., Chillingworth T., Cronin A., Davies R.M., Davis P., Dougan G., Feltwell T., Hamlin N., Holroyd S., Jagels K., Karlyshev A.V., Leather S., Moule S., Oyston P.C., Quail M., Rutherford K., Simmonds M., Skelton J., Stevens K., Whitehead S., Barrell B.G. Genome sequence of Yersinia pestis, the causative agent of plague. Nature. 2001; 413:523–7.

14. Perry R.D., Fetherston J.D. Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Microbes Infect. 2011; 13:808–17.

15. Rakin A., Urbitsch P., Heesemann J. Evidence for two evolutionary lineages of highly pathogenic Yersinia species. J. Bacteriol. 1995; 177:2292–8.

16. Rakin A., Schubert S., Pelludat C., Brem D., Heesemann J. The High-Pathogenicity Island of Yersiniae. In: Pathogenicity islands and other mobile virulence elements. Kaper J. B., Hacker, editors. Washington D.C.: ASM‐Press; 1999. P. 77–90.

17. Rakin A., Golubov A., Iwobi A., Heesemann J. Tracing acquisitions and losses in Yersinia genomes. In: The Genus Yersinia. Entering the Functional Genomic Era. Skurnik M., Bengoechea J.A., Granfors K., editors. NY: Kluwer Academic/Plenum Publishes; 2003. P. 19–23.

18. Rakin A., Schneider L., Podladchikova O. Hunger for iron: the alternative siderophore iron scavenging systems in highly virulent Yersinia. Front Cell Infect. Microbiol. 2012; 2:151.

19. Schwyn B., Neiland J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987; 160:47–56.

20. Schubert S., Rakin A., Heesemann J. The Yersinia highpathogenicity island (HPI): evolutionary and functional aspects. Int. J. Med. Microbiol. 2004; 294:83–94.


Review

For citations:


Rakin A., Garzetti D. Different siderophores contribute to the high-pathogenicity phenotype in Yersinia. Problems of Particularly Dangerous Infections. 2013;(3):58-62. https://doi.org/10.21055/0370-1069-2013-3-58-62

Views: 656


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)