Preview

Problems of Particularly Dangerous Infections

Advanced search

Cholera Vibrio Virulence Strategy and Ways of its Realization (Scientific Review)

https://doi.org/10.21055/0370-1069-2013-4-60-68

Abstract

The basic ways of Vibrio cholerae virulence strategy realization through acquisition and expression of genes of various toxic substances are discussed. Considered are molecular mechanisms responsible for interaction between host organism and cholera vibrios, as well as for genetic information exchange, for accumulation and loss of determinants of factors, which are non-identical structurally but functionally similar. Based on the analysis of literature data and personal observations put forward is a conception of pathogenicity factor intersubstitutability allowing for restoration and maintenance of pathogenetic potential of severe diarrheal disease agents among the strains deprived of cholera toxin genes.

About the Author

E. V. Monakhova
Rostov-on-Don Research Anti-Plague Institute
Russian Federation


References

1. Bardakhch’yan E.A., Monakhova E.V., Kharlanova N.G., Sayamov S.R., Pisanov R.V. [Ultra structural changes in the small intestine of suckling mice as a consequence of exposure to cholera vibrio haemagglutinin/protease]. Byul. Eksperim. Biol. Med. 2008; 145(4):475–80.

2. Bardakhch’yan E.A., Kharlanova N.G., Lomov Yu.M., Tkacheva T.I. [Ultra structural changes of epithelial cells and microvasculature of small intestine of suckling rabbits inoculated with cholera vibrios]. Morfologiya. 2001; 120(5):79–84.

3. Monakhova E.V., Pisanov R.V. [A Comparative analysis of literature and computer-based data about the properties of cholera vibrio cytotoxic factor, NMDCY, and hemaggluti-nin/protease]. Probl. Osobo Opasn. Infek. 2006; 1(91):15–20.

4. Monakhova E.V., Pisanov R.V., Mazrukho A.B., Markina O.V., Alekseeva L.P. [Cef properties (CHO cell elongating factor) of cholera vibrios: bio-information analysis and experimental findings]. Mol. Genet. Mikrobiol. Virusol. 2012; 2:10–4.

5. Monakhova E.V., Smolikova L.M., Bozhko N.V. [PCR detection of TTSS genes (third type secretion system) and other pathogenicity/persistency factors in cholera vibrios of various serotypes]. Epidemiol. Infek. Bol. 2010; 6:20–5.

6. Monakhova E.V., Fedorenko G.M., Mazrukho A.B., Pisanov R.V., Kruglikov V.D., Markina O.V., Alekseeva L.P. [Study of Biological Effect of CHO-Cell Elongating Factor of Vibrio cholerae on Models in vitro and in vivo]. Probl. Osobo Opasn. Infek. 2012; 1(111):62–5.

7. Pisanov R.V. [Zot and Ace are additional toxins included in cholera vibrio virulence cassette]. Probl. Osobo Opasn. Infek. 2002; 1(83):15–21.

8. Sayamov S.R., Monakhova E.V., Fedorenko G.M., Tkacheva T.I., Markina O.V., Alekseeva L.P., Pisanov R.V., Bardakhch’yan E.A. [Ultra structural changes in cultured cells under the influence of cholera vibrio hemagglutinin/ protease]. Byul. Eksperim. Biol. Med. 2011; 152(10):438–42.

9. Smirnova N.I., Zadnova S.P., Shashkova A.V., Kutyrev V.V. [Variability of the genome of the altered variants of Vibrio cholerae biovar El Tor, isolated in the territory of Russia in modern period]. Mol. Genet. Mikrobiol. Virusol. 2011; 3:11–8.

10. Shimanyuk N.Ya., Duvanova O.V., Suchkov I.Yu., Mishan’kin B.N. [Vibrio cholerae O139 “Bengal” receptor destroying enzyme: detection, purification and particular properties]. Biotekhnologiya. 1999; 3:56–62.

11. Ahrens S., Geissler B., Satchell K.J. Identification of a His-Asp-Cys catalytic triad essential for function of the Rho inactivation domain (RID) of Vibrio cholerae MARTX toxin. J. Biol. Chem. 2013; 288(2):1397–408.

12. Bhattacharyya S., Gosh S., Shant J., Ganguly N.K., Majumdar S. Role of the W07-toxin on Vibrio cholerae-induced diarrhoea. Biochim. Biophys. Acta. 2004; 1670:69–80.

13. Boyd E.F., Heilpern A.J., Waldor M.K. Molecular analysis of a putative СТХ φ precursor and evidence for independent acquisition of distinct СТХ φs by toxigenic Vibrio cholerae. J. Bacteriol. 2000; 182(19):5530–38.

14. Boyd E.F., Waldor M.K. Alternative mechanism of cholera toxin acquisition by Vibrio cholerae: generalized transduction of CTXφ by bacteriophage CP-T1. Infect. Immun. 1999; 67(11):5898–905.

15. Campos J., Martínez E., Izquierdo Y., Fando R. VEJφ, a novel filamentous phage of Vibrio cholerae able to transduce the cholera toxin genes. Microbiology. 2010; 156(1):108–15.

16. Chakrabarti S.R., Chaudhuri K., Sen K., Das J. Porins of Vibrio cholerae: purification and characterization of OmpU. J. Bacteriol. 1996; 178(2):524–30.

17. Chiavelli D.A., Marsh J.W., Taylor R.K. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl. Environ. Microbiol. 2001; 67(7):3220–5.

18. Choi S., Dunams D., Jiang S.C. Transfer of cholera toxin genes from O1 to non-O1/O139 strains by vibriophages from California coastal waters. J. Appl. Microbiol. 2010; 108(3):1015–22.

19. Choi S.Y., Lee J.H., Kim E.J., Lee H.R., Jeon Y.S., von Seidlein L., Deen J., Ansaruzzaman M., Lucas M., Barreto A., Songane F., Mondlane C., Nair G.B., Czerkinsky C., Clemens J.D., Chun J., Kim D.W. Classical RS1 and environmental RS1 elements in Vibrio cholerae O1 El Tor strains harbouring a tandem repeat of CTX prophage: revisiting Mozambique in 2005. J. Med. Microbiol. 2010; 59(3):302–8.

20. Dutta D., Chowdhury G., Pazhani G.P., Guin S., Dutta S., Ghosh S., Rajendran K., Nandy R.K., Mukhopadhyay A.K., Brattacharya M.K., Mitra U., Takeda Y., Nair G.B., Ramamurthy T. Vibrio cholerae non-O1, non-O139 serogroups and cholera-like diarrhea, Kolkata, India. Emerg. Infect. Dis. 2013; 19:464–7.

21. Faruque, S.M., Mekalanos J.J. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence. 2012; 3(7):556–65.

22. Fasano A. Toxins and the gut: role in human disease. Gut. 2002; 50(Suppl 3):iii9–iii14.

23. Fullner Satchell K.J. MARTX, multifunctional autoprocessing repeats-in-toxin toxins. Infect. Immun. 2007; 75(11):5079–84.

24. Heilpern A.J., Waldor M.K. CTXφ infection of Vibrio cholerae requires the tolQRA gene products. J. Bacteriol. 2000; 182(6):1739–47.

25. Jermyn W.S., Boyd E.F. Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology. 2002; 148:3681–93.

26. Jørgensen R., Purdy A.E., Fieldhouse R.J., Kimber M.S. Cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae. J. Biol. Chem. 2008; 283(16):10671–8.

27. Ledón T., Campos J., Suzarte E., Rodríguez B., Marrero K., Fando R. El Tor and Calcutta CTXPhi precursors coexisting with intact CTXPhi copies in Vibrio cholerae O139 isolates. Res. Microbiol. 2008; 159(20):81–7.

28. Lizárraga-Partida M.L., Quilici M.-L. Molecular analyses of Vibrio cholerae O1 clinical strains, including new nontoxigenic variants isolated in Mexico during the cholera epidemic years between 1991 and 2000. J. Clin. Micribiol. 2009; 47(5):1364–71.

29. Ma A.T., MсAuley S.B., Pukatzki S., Mekalanos J.J. Translocation of a Vibrio cholerae type VI secretion system requires bacterial endocytosis by host cell. Cell Host Microbe. 2009; 5:234–43.

30. McCardell B.A., Sathyamoorthy V., Michalski J., Lavu S., Kothary M., Livezey J., Kaper J.B., Hall R. Cloning, expression and characterization of the CHO cell elongating factor (Cef) from Vibrio cholerae O1. Microb. Pathog. 2002; 32(4):165–72.

31. Meibom K.L., Blokesch M., Dolganov N.A., Wu C.Y., Schoolnik G.K. Chitin induces natural competence in Vibrio cholerae. Science. 2005; 310(5755):1824–7.

32. Menon D., Karyekar C.S., Fasano A., Lu R., Eddington N.D. Enhancement of brain distribution of anticancer agents using DeltaG, the 12 kDa active fragment of ZOT. Int. J. Pharm. 2005; 306(1–2):122–31.

33. Miller K.A., Hamilton E., Dziejman M. The Vibrio cholerae trh gene is coordinately regulated in vitro with type III secretion system genes by VttR(A)/VttR(B) but does not contribute to Caco2-BBE cell cytotoxicity. Infect. Immun. 2012; 80(12):4444–55.

34. Miyata S.T., Kitaoka M., Wieteska L., Frech C., Chen N., Pukatski S. The Vibrio cholerae type VI secretion system: evaluating its role in the human disease cholera. Front. Microbiol. 2010; 1:117.

35. Nishibuchi M., Khaeomaneeiam V., Honda T., Kaper J. B., Miwatani. T. Comparative analysis of the hemolysin genes of Vibrio cholerae non-O1, V. mimicus, and V. hollisae that are similar to the tdh gene of V. parahaemolyticus. FEMS Microbiol. Lett. 1990; 67:251–6.

36. O’Brien A.D., Holmes R.K. Shiga and shiga-like toxins. Microbiol. Rev. 1987; 51(2):206–20.

37. Olivier V., Queen J., Satchell K.J.F. Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins. PLoS One. 2009; 4:e7352.

38. Pukatzki S., MсAuley S.B., Miyata S.T. The type VI secretion system: translocation of effectors and effector-domains. Curr. Opin. Microbiol. 2008; 12(1):1–7.

39. Saha P.K., Koley H., Nair G.B. Purification and characterization of an extracellular secretоgenic non-membrane-damaging cytotoxin produced by clinical strains of Vibrio cholerae non-O1. Infect. Immun. 1996; 64(8):3101–8.

40. Sanyal S.C. A new diarrhoeagenic cholera toxin. J. Toxicol. Toxin Rev. 1990; 9(1):125.

41. Sarkar B., Bhattacharya T., Ramamurthy T., Shimada T., Takeda Y., Nair G.B. Preferential association of the heat-stable enterotoxin gene (stn) with environmental strains of Vibrio cholerae belonging to the O14 serogroup. Epidemiol. Infect. 2002; 129(2):245–51.

42. Sears C.L., Kaper J.D. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol. Rev. 1996; 60(1):167–215.

43. Syngkon A., Elluri S., Koley H., Rompikuntal P.K., Saha D.R., Chakrabarti M.K., Bhadra R.K., Wai S.N., Pal A. Studies on a novel serine protease of a ΔhapAΔprtV Vibrio cholerae O1 strain and its role in hemorrhagic response in the rabbit ileal loop model. PLoS One. 2010; 5:e13122.

44. Takeda T., Peina Y., Ogawa A., Dohi S., Abe H., Nair G.B., Pal S.C. Detection of heat-stable enterotoxin in a cholera toxin gene-positive strain of Vibrio cholerae O1. FEMS Microbiol Lett. 1991; 64(1):23–7.

45. Tam V.C., Serruto D., Dziejman M., Brieher W., Mekalanos J.J. A type III secretion system in Vibrio cholerae translocates a formin/spire hybridlike actin nucleator to promote intestinal colonization. Cell Host Microbe. 2007; 1(2):95–107.

46. Tam V.C., Suzuki M., Coughlin M., Saslowsky D., Biswas K., Lencer W.I., Faruque S.M., Mekalanos J.J. Functional analysis of VopF activity required for colonization in Vibrio cholerae. mBio. 2010; 1(5):e00289-10.

47. Valeva A., Walev I., Weis I., Boukhallouk F., Wassenaar T.M., Endres K., Fahrenholz F., Bhakdi S., Zitzer A.. A cellular metalloproteinase activates Vibrio cholerae pro-cytolysin. J. Biol. Chem. 2004; 279(24):25143-8.

48. Walia K., Ganguly N.K. Toxins of Vibrio cholerae and their role in inflammation, pathogenesis, and immunomodulation. In: Ramamurthy T., Bhattacharya S.K., editors. Epidemiological and molecular aspects on cholera. Springer Science+Business Media; 2010. P. 259–74.

49. Wu Z., Nybon A., Magnusson K.E. Distinct effects of Vibrio cholerae hemagglutinin/protease on the structure and localization of the tight junction-associated proteins occludin and ZO-1. Cell Microbiol. 2000; 2(1):11–7.

50. Yanagihara I., Nakahira K., Yamane T., Kaieda S. Structure and functional characterization of Vibrio parahaemolyticus thermostable direct hemolysin. J. Biol. Chem. 2010; 285(21):16267–74.


Review

For citations:


Monakhova E.V. Cholera Vibrio Virulence Strategy and Ways of its Realization (Scientific Review). Problems of Particularly Dangerous Infections. 2013;(4):60-68. (In Russ.) https://doi.org/10.21055/0370-1069-2013-4-60-68

Views: 1031


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)