Preview

Problems of Particularly Dangerous Infections

Advanced search

Changes in Biomodels in Response to Recombinant Protective Anthrax Antigen Inoculation

https://doi.org/10.21055/0370-1069-2013-4-106-109

Abstract

one. The data obtained has substantiated the lack of an expressed damaging effect of the recombinant protective antigen on the cells and tissues of the macro­organism, as well as possibility of its application as one of the core components of the chemical anthrax vaccine.

About the Authors

P. Yu. Popova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation


S. A. Bugorkova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation


N. I. Mikshis
Russian Research Anti-Plague Institute “Microbe”
Russian Federation


A. P. Semakova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation


Yu. A. Popov
Russian Research Anti-Plague Institute “Microbe”
Russian Federation


T. N. Shchukovskaya
Russian Research Anti-Plague Institute “Microbe”
Russian Federation


References

1. Korzhevsky D.E., Gilyarov A.V. [Fundamental Principles of Histological Technique]. St. Petersburg; 2010. 96 p.

2. Mikshis N.I., Kudryavtseva O.M., Bolotnikova M.F., Shulepov D.V., Novikova L.V., Popov Yu.A., Shchukovskaya T.N., Drozdov I.G., Kutyrev V.V. [Immunogenicity of recombinant bacilli strains with cloned gene responsible for Bacillus anthracis protective antigen synthesis]. Mol. Genet. Mikrobiol. Virusol. 2007; 3:15–21.

3. National Research Council. [Guidelines on care and use of laboratory animals]. Washington: National Academy; 1996.

4. [Basic requirements to anthrax microbe vaccine strains used for immunization of humans]. Methodological recommendations. MR 3.3.1.1112-02. M.; 2002. 47 p.

5. Popova P.Yu., Mikshis N.I., Kudryavtseva O.M., Goncharova A.Yu., Novikova L.V., Kashtanova T.N., Popov Yu.A., Smol’kova E.A., Kravtsov A.L., Shchukovskaya T.N.[Influence of the protective antigen, produced by Bacillus anthracis asporogenic recombinant strain, on the immune system of laboratory animals]. Probl. Osobo Opasn. Infek. 2012; 1(111):84–7.

6. Bashir M.E., Louie S., Shi H.N., Nagler-Anderson C. Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J. Immunol. 2004; 172:6978–87.

7. Chitlaru T., Altboum Z., Reuveny S., Shafferman A. Progress and novel strategies in vaccine development and treatment of anthrax. Immunol. Rev. 2011; 239(1):221–36.

8. Eisenbarth S., Piggott D., Huleatt J., Visintin I., Herrick C., Bottomly K. Lipopolysaccharide-enhanced, Toll-like Receptor 4–dependent T Helper Cell Type 2 Responses to Inhaled Antigen. J. Exp. Med. 2002; 196(12):1645–51.

9. Fellows P., Linscott M., Ivins B., Pitt M., Rossi C., Gibbs P., Friedlander A. Efficacy of a human anthrax vaccine in guinea pigs, rabbits and rhesus macaques against challenge by Bacillus anthracis isolates of diverse geographical origin. Vaccine. 2001; 19:3241–7.

10. Goossens P. Animal models of human anthrax: the quest for the Holy Grail. Mol. Aspects Med. 2009; 30(6):467–80.

11. Ivins B., Fellows P., Nelson G. Efficacy of a standard human anthrax vaccine against Bacillus anthracis spore challenge in guinea pigs. Vaccine. 1994; 12(10): 872–4.

12. Scorpio A., Blank T., Day W., Chabot D. Anthrax vaccines: Pasteur to present. Cell Mol. Life Sci. 2006; 63:2237–48.


Review

For citations:


Popova P.Yu., Bugorkova S.A., Mikshis N.I., Semakova A.P., Popov Yu.A., Shchukovskaya T.N. Changes in Biomodels in Response to Recombinant Protective Anthrax Antigen Inoculation. Problems of Particularly Dangerous Infections. 2013;(4):106-109. (In Russ.) https://doi.org/10.21055/0370-1069-2013-4-106-109

Views: 614


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)