Preview

Problems of Particularly Dangerous Infections

Advanced search

HIV and Parenteral Viral Hepatitis in the Co-Morbidity Structure of Patients with Post-COVID Syndrome

https://doi.org/10.21055/0370-1069-2025-4-104-109

Abstract

The aim of our study was to assess the prevalence of HIV and blood-borne viral hepatitis markers among individuals with post-COVID syndrome.

Materials and methods. The study material consisted of blood plasma samples from 129 patients diagnosed with long COVID. The samples were tested for serological (ELISA with commercial kits, in case of Ag/Ab-HIV detection – Western blot) and molecular (PCR assay) markers.

Results and discussion. Evaluation of overall marker prevalence revealed complex relationships between HIV infection, viral hepatitis, and the development of post-COVID syndrome in the cohort. Our data demonstrate that among HIV-positive patients receiving antiretroviral therapy – who constituted 6.97 % of the study cohort – mild forms of COVID-19 were predominant (55.56 % of cases). This finding aligns with the current understanding of the modulating effect that immunosuppression has on the cytokine storm in case of COVID-19. Furthermore, analysis of the results revealed a higher detection rate of HCV RNA (1.55 %) compared to the general population. This observation warrants further investigation into the potential role of HCV in the development of long COVID, particularly in light of data suggesting prolonged SARS-CoV-2 viremia in this patient category. Conversely, the low prevalence of HB markers (7.75 % anti-HBcore antibodies with no HBsAg-positive cases) did not confirm their association with post-COVID syndrome in our sample, despite literature suggesting increased long COVID risk against chronic hepatitis B. Assessment of blood-borne infection prevalence among COVID-19 survivors may be valuable for early identification of high-risk patients developing post-COVID syndrome. The results emphasize the need for larger-scale studies to clarify pathogenic mechanisms of interaction between chronic viral infections and SARS-CoV-2, as well as to develop personalized monitoring and management approaches for high-risk long COVID patients.

About the Authors

Yu. V. Ostankova
Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology
Russian Federation

Yulia V. Ostankova, 

14, Mira St., St. Petersburg, 197101



A. N. Shchemelev
Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology
Russian Federation

14, Mira St., St. Petersburg, 197101



E. N. Serikova
Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology
Russian Federation

14, Mira St., St. Petersburg, 197101



E. V. Anufrieva
Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology
Russian Federation

14, Mira St., St. Petersburg, 197101



E. V. Zagal’skaya
Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology
Russian Federation

14, Mira St., St. Petersburg, 197101



A. A. Knizhnikova
Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology
Russian Federation

14, Mira St., St. Petersburg, 197101



A. O. Norka
Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology
Russian Federation

14, Mira St., St. Petersburg, 197101



V. V. Rassokhin
Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology
Russian Federation

14, Mira St., St. Petersburg, 197101



N. A. Belyakov
Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology
Russian Federation

14, Mira St., St. Petersburg, 197101



Аreg A. Totolian
Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology
Russian Federation

14, Mira St., St. Petersburg, 197101



References

1. World Health Organization (WHO). WHO COVID-19 Dashboard. 2025. (Cited 06 July 2025). [Internet]. Available from: https://data.who.int/dashboards/covid19/deaths.

2. Center for Disease Control and Prevention. Long COVID or post-COVID conditions. CDC (2022) United States: U.S. Department of Health & Human Services. (Cited 08 June 2025). [Internet]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/longterm-effects/index.html.

3. Swank Z., Senussi Y., Manickas-Hill Z., Yu X.G., Li J.Z., Alter G., Walt D.R. Persistent circulating severe acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus disease 2019 sequelae. Clin. Infect. Dis. 2023; 76(3):e487-e490. DOI: 10.1093/cid/ciac722.

4. Kariyawasam J.C., Jayarajah U., Abeysuriya V., Riza R., Seneviratne S.L. Involvement of the liver in COVID-19: A syste¬ matic review. Am. J. Trop. Med. Hyg. 2022; 106(4):1026–41. DOI: 10.4269/ajtmh.21-1240.

5. Wang Y., Liu S., Liu H., Li W., Lin F., Jiang L., Li X., Xu P., Zhang L., Zhao L., Cao Y., Kang J., Yang J., Li L., Liu X., Li Y., Nie R., Mu J., Lu F., Zhao S., Lu J., Zhao J. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J. Hepatol. 2020; 73(4): 807–16. DOI: 10.1016/j.jhep.2020.05.002.

6. Ostankova Yu.V., Saitgalina M.A., Arsentieva N.A., Totolian A.A. [Evaluation of TREC/KREC levels in HIV-infected individuals]. VICH Infektsiya i Immunosupresii [HIV Infection and Immunosuppressive Disorders]. 2024; 16(2):51–9. DOI: 10.22328/2077-9828-2024-16-2-51-59.

7. Yang X., Shi F., Zhang H., Giang W.A., Kaur A., Chen H., Li X. Long COVID among people with HIV: A systematic review and meta-analysis. HIV Med. 2025; 26(1):6–16. DOI: 10.1111/hiv.13708.

8. Quarleri J., Delpino M.V. Molecular mechanisms underlying SARS-CoV-2 hepatotropism and liver damage. World J. Hepatol. 2024; 16(1):1–11. DOI: 10.4254/wjh.v16.i1.1.

9. Ostankova Yu.V., Serikova E.N., Semenov A.V., Totolian Areg A. [Method for hepatitis B virus DNA detecting in biological material at low viral load based on nested PCR with detection by three viral targets in real-time mode]. Klinicheskaya Laboratornaya Diagnostika [Clinical Laboratory Diagnostics]. 2022; 67(9):530–7. DOI: 10.51620/0869-2084-2022-67-9-530-537.

10. Calza L., Bon I., Tadolini M., Borderi M., Colangeli V., Badia L., Verucchi G., Rossini G., Vocale C., Gaibani P., Viale P., Attard L. COVID-19 in patients with HIV-1 infection: a single-centre experience in northern Italy. Infection. 2021; 49(2):333–7. DOI: 10.1007/s15010-020-01492-7.

11. Mondi A., Cimini E., Colavita F., Cicalini S., Pinnetti C., Matusali G., Casetti R., Maeurer M., Vergori A., Mazzotta V., Gagliardini R., De Zottis F., Schininà V., Girardi E., Puro V., Ippolito G., Vaia F., Capobianchi M.R., Castilletti C., Agrati C., Antinori A. COVID-19 in people living with HIV: Clinical implications of dynamics of the immune response to SARS-CoV-2. J. Med. Virol. 2021; 93(3):1796–804. DOI: 10.1002/jmv.26556.

12. Mann E.R., Menon M., Knight S.B., Konkel J.E., Jagger C., Shaw T.N., Krishnan S., Rattray M., Ustianowski A., Bakerly N.D., Dark P., Lord G., Simpson A., Felton T., Ho L.P.; NIHR Respiratory TRC; Feldmann M.; CIRCO; Grainger J.R., Hussell T. Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19. Sci. Immunol. 2020; 5(51):eabd6197. DOI: 10.1126/sciimmunol.abd6197.

13. Saitgalina M.A., Ostankova Yu.V., Arsentieva N.A., Korobova Z.R., Lyubimova N.E., Kashchenko V.A., Kulikov A.N., Pevtsov D.E., Stanevich O.V., Chernykh E.I., Totolian A.A. [Significance of determining the levels of TREC and KREC molecules in peripheral blood for predicting the outcome of COVID-19 disease in the acute period]. Rossiisky Immunologichesky Zhurnal [Russian Journal of Immunology]2023; 26(4):611–8. DOI: 10.46235/1028-7221-14714-LOT.

14. Saitgalina M.A., Ostankova Yy.V., Arsentieva N.A., Korobova Z.R., Lyubimova N.E., Kashchenko V.A., Kulikov A.N., Pevtsov D.E., Stanevich O.V., Chernykh E.I., Totolian A.A. [Assessment of TREC and KREC levels in COVID-19 patients with varying disease severity]. Infektsiya i Immunitet [Russian Journal of Infection and Immunity]. 2023; 13(5):873–84. DOI: 10.15789/2220-7619-AOT-16937.

15. Liu J., Li S., Liu J., Liang B., Wang X., Wang H., Li W., Tong Q., Yi J., Zhao L., Xiong L., Guo C., Tian J., Luo J., Yao J., Pang R., Shen H., Peng C., Liu T., Zhang Q., Wu J., Xu L., Lu S., Wang B., Weng Z., Han C., Zhu H., Zhou R., Zhou H., Chen X., Ye P., Zhu B., Wang L., Zhou W., He S., He Y., Jie S., Wei P., Zhang J., Lu Y., Wang W., Zhang L., Li L., Zhou F., Wang J., Dittmer U., Lu M., Hu Y., Yang D., Zheng X. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020; 55:102763. DOI: 10.1016/j.ebiom.2020.102763.

16. Phetsouphanh C., Darley D.R., Wilson D.B., Howe A., Munier C.M.L., Patel S.K., Juno J.A., Burrell L.M., Kent S.J., Dore G.J., Kelleher A.D., Matthews G.V. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 2022; 23(2):210–6. DOI: 10.1038/s41590-021-01113-x.

17. Glynne P., Tahmasebi N., Gant V., Gupta R. Long COVID following mild SARS-CoV-2 infection: characteristic T cell alterations and response to antihistamines. J. Investig. Med. 2022; 70(1):61–7. DOI: 10.1136/jim-2021-002051.

18. Zurochka A.V., Dobrynina M.A., Safronova E.A., Zurochka V.A., Zuikova A.A., Sarapultsev G.P., Zabkov O.I., Mosunov A.A., Verkhovskaya M.D., Ducardt V.V., Fomina L.O., Kostolomova E.G., Ostankova Yu.V., Kudryavtsev I.V., Totolian A.A. [Alterations in T cell immunity over 6–12 months post-COVID-19 infection in convalescent individuals: A screening study]. Infektsiya i Immunitet [Russian Journal of Infection and Immunity]. 2024; 14(4):756–68. DOI: 10.15789/2220-7619-AIT-17646.

19. Korobova Z.R., Arsentieva N.A., Butenko A.A., Kudryavtsev I.V., Rubinstein A.A., Turenko A.S., Ostankova Y.V., Boeva E.V., Knizhnikova A.A., Norka A.O., Rassokhin V.V., Belyakov N.A., Totolian Areg A. T cell dynamics in COVID-19, long COVID and successful recovery. Int. J. Mol. Sci. 2025; 26(15):7258. DOI: 10.3390/ijms26157258.

20. Long COVID more common in people with HIV | aidsmap (2022). (Cited 04 July 2025). [Internet]. Available from: https://www.aidsmap.com/news/mar-2022/long-covid-more-common-people-hiv.

21. Lin F., Hao S., Xiao X., Li X. Association between Hepatitis B virus infection and COVID-19: outcomes from clinical analysis and online survey from Beijing, China. BMC Infect. Dis. 2024; 24(1):1438. DOI: 10.1186/s12879-024-10333-z.

22. Wu Y.F., Yu W.J., Jiang Y.H., Chen Y., Zhang B., Zhen R.B., Zhang J.T., Wang Y.P., Li Q., Xu F., Shi Y.J., Li X.P. COVID 19 or treatment associated immunosuppression may trigger hepatitis B virus reactivation: A case report. World J. Clin. Cases. 2021; 9(19):5266–9. DOI: 10.12998/wjcc.v9.i19.5266.

23. Sagnelli C., Sica A., Creta M., Borsetti A., Ciccozzi M., Sagnelli E. Prevention of HBV reactivation in hemato-oncologic setting during COVID-19. Pathogens. 2022; 11(5):567. DOI: 10.3390/pathogens11050567.

24. Villar L.M., de Paula V.S., Pinto L.C.M., Marques B.C.L., da Costa V.D., da Silva L.L., Santos A.C., do Nascimento G.P., Miguel J.C., Mendonça A.C.D.F., Motta F.C., Lewis-Ximenez L.L. Clinical and laboratory characteristics of hepatitis C and COVID-19 coinfection: Prolonged RNA shedding in nonhospitalized case. Clin. Case Rep. 2021; 9(8):10.1002/ccr3.3877. DOI: 10.1002/ccr3.3877.


Review

For citations:


Ostankova Yu.V., Shchemelev A.N., Serikova E.N., Anufrieva E.V., Zagal’skaya E.V., Knizhnikova A.A., Norka A.O., Rassokhin V.V., Belyakov N.A., Totolian А.A. HIV and Parenteral Viral Hepatitis in the Co-Morbidity Structure of Patients with Post-COVID Syndrome. Problems of Particularly Dangerous Infections. 2025;(4):104-109. (In Russ.) https://doi.org/10.21055/0370-1069-2025-4-104-109

Views: 15

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)