Development of Real-Time Multiplex PCR Assay for the Detection and Differentiation of Burkholderia mallei and Burkholderia pseudomallei
https://doi.org/10.21055/0370-1069-2016-4-56-59
Abstract
Objective of the study was to develop a real-time multiplex PCR assay for the detection and differentiation of B. mallei and B. pseudomallei, characterized by high sensitivity and specificity. Materials and Methods. The primers and probes were designed to detect the species-specific sequence of the fliР gene of B. mallei and gp68 gene of B. pseudomallei, respectively. Species specificity was tested with a panel of 56 B. pseudomallei strains, 14 B. mallei strains and 34 strains of closely or distantly related species. To define the analytical sensitivity of the assay, the serially diluted bacterial suspension at concentrations of 109 –102 cells /ml was used. Conclusions. The multiplex PCR assay with two primer pairs and fluorescently-labeled probes, allowing for simultaneous detection and differentiation between B. mallei and B. pseudomallei was designed. Species-specific for glanders agent, B. mallei, fragment of fliP gene, which encodes protein of flagellin biosynthesis, and species-specific gene region of B. pseudomallei, encoding gp68 protein, were identified as DNA targets. Testing of Burkholderia and non-Burkholderia bacterial species revealed 100 % specificity of the amplification assay. The minimum detection limit of the designed multiplex PCR test-system was 1·103 cells/ml for B. mallei, and 1·104 cells/ml for B. pseudomallei.
About the Authors
L. V. LemasovaRussian Federation
7, Golubinskaya St., Volgograd, 400131
G. A. Tkachenko
Russian Federation
7, Golubinskaya St., Volgograd, 400131
S. S. Savchenko
Russian Federation
7, Golubinskaya St., Volgograd, 400131
O. S. Bondareva
Russian Federation
7, Golubinskaya St., Volgograd, 400131
V. A. Antonov
Russian Federation
7, Golubinskaya St., Volgograd, 400131
References
1. Prokhvatilova E.V., Antonov V.A., Viktorov D.V., Ilyukhin V.I., Khrapova N.P., Tkachenko G.A., Zakharova I.B., Plekhanova N.G., Novitskaya I.V., Kulakov M.Ya., Zamarina T.V., Korsakova I.I., Savchenko S.S., Bondareva O.S., Baturin A.A., Lemasova L.V., Teteryatnikova N.N., Belitskaya L.I. [Assessment of efficiency of applying the reagent panel for the detection of melioidosis agent for the purposes of internal quality control of laboratory tests at the Reference Center for monitoring over glanders and melioidosis agents]. Dal’nevostoch. Zh. Infek. Patol. 2014; 25(25):128–32.
2. Brilhante R.S., Bandeira T.J., Cordeiro R.A., Grangeiro T.B., Lima R.A., Ribeiro J.F., Castelo-Branco D.S., Rodrigues J.L., Coelho I.C., Magalhães F.G., Rocha M.F., Sidrim J.J. Clinical-epidemiological features of 13 cases of melioidosis in Brazil. J. Clin. Microbiol. 2012; 50(10):3349–52. DOI: 10.1128/JCM.01577-12.
3. Currie B.J., Dance D.A., Cheng A.C. The global distribution of Burkholderia pseudomallei and melioidosis: an update. Trans. R. Soc. Trop. Med. Hyg. 2008; 102 Suppl 1:S1–4. DOI: 10.1016/S0035-9203(08)70002-6.
4. Chen Y.S., Lin H.H., Mu J.J., Chiang C.S., Chen C.H., Buu L.M., Lin Y.E., Chen Y.L. Distribution of melioidosis cases and viable Burkholderia pseudomallei in soil: evidence for emerging melioidosis in Taiwan. J. Clin. Microbiol. 2010; 48(4):1432–4. DOI: 10.1128/JCM.01720-09 48.
5. Jamkhandi D.M., Alex R., George K. Melioidosis: a report of two cases. Natl. Med. J. India. 2014; 27(4):202–3.
6. Rainbow L., Hart C.A., Winstanley G. Distribution of type III secre- tion gene clusters in Burkholderia pseudomallei, B. thailandensis and B. mal- lei. J. Med. Microbiol. 2002; 51(5):374–84.
7. Sonthayanon P., Krasao P., Wuthiekanun V., Panyim S., Tungpradabkul S. A simple method to detect and differentiate Burkholderia pseudomallei and Burkholderia thailandensis using specific flagellin gene primers. Mol. Cell. Probes. 2002; 16(3):217–22.
8. Tomaso H., Pitt T.L., Landt O., Dahouk S.A., Scholz H.C., Reisinger E.C., Sprague L.D., Rathmann I., Neubauer H. Rapid presumptive identifica- tion of Burkholderia pseudomallei with real-time PCR assays using fluores- cent hybridization probes. Mol. Cell. Probes. 2005; 19(1):9–20.
9. Whitlock G.C., Estes D.M., Torres A.G. Glanders: off to the races with Burkholderia mallei. FEMS Microbiol. Lett. 2007; 277(2):115–22.
10. Winstanley C., Hart C. A. Presence of type III secretion genes in Burkholderia pseudomallei correlates with Ara– phenotypes. J. Clin. Microbiol. 2000; 38(2):883–5.
11. Varma-Basil M., E-Hajj H, Marras S.A., Hazbón M.H., Mann J.M., Connell N.D., Kramer F.R., Alland D. Molecular beacons for multiplex detec- tion of four bacterial bioterrorism agents. Clin. Chem. 2004; 50(6):1060–2.
12. Yang S. Melioidosis research in China. Acta Trop. 2000; 77(2):157–65.
Review
For citations:
Lemasova L.V., Tkachenko G.A., Savchenko S.S., Bondareva O.S., Antonov V.A. Development of Real-Time Multiplex PCR Assay for the Detection and Differentiation of Burkholderia mallei and Burkholderia pseudomallei. Problems of Particularly Dangerous Infections. 2016;(4):56-59. (In Russ.) https://doi.org/10.21055/0370-1069-2016-4-56-59