Preview

Проблемы особо опасных инфекций

Расширенный поиск

Адгезины возбудителя чумы

https://doi.org/10.21055/0370-1069-2018-2-14-22

Аннотация

Возбудитель чумы обладает комплексом адгезинов, обеспечивающих прикрепление возбудителя к клеткаммишеням в организме хозяина и во многом определяющих начало, характер и течение болезни. Наличие адгезинов обеспечивает транслокацию эффекторных белков в клетки-мишени млекопитающих. В обзоре представлены литературные данные как о наиболее изученных адгезинах Yersinia pestis (белках Ail и pH6 антиген), так и о недавно выявленных аутотранспортных белках различных классов, участвующих в процессах адгезии (YadBC, Yaps, Ilp). Описано их значение для патогенеза чумы, генетическая детерминированность, структура и локализация в клетке. Отмечено, что адгезины возбудителя чумы действуют на разных стадиях инфекционного процесса, выполняют множественные функции, участвуют не только в процессах прикрепления к клеткам хозяина, но также обеспечивают устойчивость к действию иммунных механизмов хозяина.

 

Об авторе

Л. М. Куклева
ФКУЗ «Российский научно-исследовательский противочумный институт «Микроб», Саратов
Россия


Список литературы

1. Водопьянов С.О., Мишанькин Б.Н. Пили адгезии у Yersinia pestis. Журнал микробиологии, эпидемиологии и иммунобиологии. 1985; 6:13–7.

2. Евсеева В.В., Платонов М.Е., Копылов П.Х., Дентовская С.В., Анисимов А.П. Активатор плазминогена чумного микроба. Инфекция и иммунитет. 2015; 5(1):27–36. DOI: 10.15789/2220- 7619-2015-1-27-36.

3. Ерошенко Г.А., Одиноков Г.Н., Куклева Л.М., Краснов Я.М., Кутырев В.В. Сравнительный анализ нуклеотидной последовательности генов yadA, inv и ail и их экспрессия в штаммах Yersinia pestis основного и неосновных подвидов и Yersinia pseudotuberculosis. Генетика. 2010; 46(6):734–41.

4. Куклева Л.М., Бойко А.В. Активатор плазминогена – многофункциональный белок возбудителя чумы. Проблемы особо опасных инфекций. 2016; 3:13–20. DOI: 10.21055/0370-1069- 2016-3-13-20.

5. Anisimov A.V., Dentovskaya S.V., Titareva G.M., Bakhteeva I.V., Shaikhutdinova R.Z., Balakhonov S.V., Lindner B., Kocharova N.A., Senchenkova S.N., Holst O., Pier G.B., Knirel Yu.A. Intraspecies and Temperature-Dependent Variations in Susceptibility of Yersinia pestis to the Bactericidal Action of Serum and to Polymyxin B. Infect. Immun. 2005; 73(11):7324–31 DOI:10.1128/ IAI.73.11.7324–7331.2005.

6. Bartra S.S., Styer K.L., O’Bryant D.M., Nilles M.L., Hinnebusch B.J., Aballay A., Plano G. Resistance of Yersinia pestis to complement-dependent killing is mediated by the Ail outer mem- brane protein. Infect. Immun. 2008; 76(2):612–22. DOI:10.1128/ IAI.01125-07.

7. Bartra S.S., Ding Y., Miya Fujimoto L., Ring J.G., Jain V., Ram S., Marassi F.M., Plano G.V. Yersinia pestis uses the Ail outer membrane protein to recruit vitronectin. Microbiology. 2015; 161(11):2174–83. DOI: 10.1099/mic.0.000179.

8. Bertherat E., Plague around the world, 2010–2015. Weekly epidemiological record. 2016; 91(8):89–104.

9. Cathelyn, J.S., Crosby S.D., Lathem W.W., Goldman W.E., Miller V.L. RovA, a global regulator of Yersinia pestis, specifical- ly required for bubonic plague. Proc. Natl. Acad. Sci. USA. 2006; 103(36):13514–9. DOI:10.1073/pnas.0603456103.

10. Chauhan N., Wrobel A., Skurnik M., Leo J.C. Yersinia ad- hesins: an arsenal for infection. Proteomics Clin. Appl. 2016; 10(9– 10):949–963. DOI: 10.1002/prca.201600012.

11. Chauvaux S., Rosso M.L., Frangeul L., Lacroix C., Labarre L., Schiavo A., Marceau M., Dillies M.A., Foulon J., Coppée J.Y., Médigue C., Simonet M., Carniel E.. Transcriptome analysis of Yersinia pestis in human plasma: an approach for discovering bac- terial genes involved in septicaemic plague. Microbiology. 2007; 153(Pt.9):3112–24. DOI: 10.1099/mic.0.2007/006213-0.

12. Chauvaux S., Dillies M.A., Marceauc M., Rosso M.L., Rousseau S., Moszer I., Simonet M., Carniel E. In silico comparison of Yersinia pestis and Yersinia pseudotuberculosis transcriptomes reveals a higher expression level of crucial virulence determinants in the plague bacillus. Intern. J. Med. Microbiol. 2011; 301(2):105–16. DOI:10.1016/j.ijmm.2010.08.013.

13. Deng W., Burland V., Plunkett G., Boutin A., Mayhew G.F., Liss P., Perna N.T., Rose D.J., Mau B., Zhou S., Schwartz D.C., Fetherston J.D, Lindler L.E., Brubaker R.R., Plano G.V., Straley S.C., McDonough K.A., Nilles M.L., Matson J.S., Blattner F.R., Perry R.D. Genome sequence of Yersinia pestis KIM. J. Bacteriol. 2002; 184(16):4601–11. DOI: 10.1128/JB.184.16.4601-4611.2002.

14. Felek S., Lawrenz M.B., Krukonis E.S. The Yersinia pes- tis autotransporter YapC mediates host cell binding, autoaggrega- tion and biofilm formation. Microbiology. 2008; 154(Pt.6):1802–12. DOI: 10.1099/mic.0.2007/010918-0.

15. Felek S., Tsang T.M., Krukonis E.S. Three Yersinia pes- tis adhesins facilitate Yop delivery to eukaryotic cells and contrib- ute to plague virulence. Infect. Immun. 2010; 78(10):4134–50. DOI:10.1128/IAI.00167-10.

16. Felek S., Jeong J.J., Runco L.M., Murray S., Thanassi D.G., Krukonis E.S. Contributions of chaperone/usher systems to cell bind- ing, biofilm formation, and Yersinia pestis virulence. Microbiology. 2011; 157(Pt.3):805–18. DOI: 10.1099/mic.0.044826-0.

17. Forman S., Wulff C.R., Myers-Morales T., Cowan C., Perry R.D, Straley S.C. yadBC of Yersinia pestis, a new virulence determinant for bubonic plague. Infect. Immun. 2008; 76(2):578–87 DOI:10.1128/IAI.00219-07.

18. Galvan E.M., Chen H., Schifferli D.M. The Psa fimbriae of Yersinia pestis interact with phosphatidylcholine on alveolar epitheli- al cells and pulmonary surfactant. Infect. Immun. 2007; 75(3):1272– 79. DOI:10.1128/IAI.01153-06.

19. Hinnebusch B.J., Jarrett C.O., Callison J.A., Gardner D., Buchanan S.K., Plano G.V. Role of the Yersinia pestis Ail protein in preventing a protective polymorphonuclear leukocyte response during bubonic plague. Infect. Immun. 2011; 79(12):4984–89. DOI:10.1128/IAI.05307-11.

20. Huang X.Z., Lindler L.E. The pH6 antigen is an antiphagocytic factor produced by Yersinia pestis independent of Yersinia outer proteins and capsule antigen. Infect. Immun. 2004; 72(12):7212–19. DOI: 10.1128/IAI.72.12.7212-7219.2004.

21. Kolodziejek A.M., Schnider D.R., Rohde H.N., Wojtowicz A.J., Bohach G.A., Minnich S.A., Hovde C.J. Outer membrane protein X (Ail) contributes to Yersinia pestis virulence in pneumonic plague and its activity is dependent on the lipopolysaccharide core length. Infect. Immun. 2010; 78(12):5233–43. DOI:10.1128/IAI.00783-10.

22. Kolodziejek A.M., Hovde C.J., Minnich S.A., Yersinia pestis Ail: multiple roles of a single protein. Front. Cell. Infect. Microbiol. 2012; 2(103):1–10. DOI: 10.3389/fcimb.2012.00103.

23. Lane M., Lenz J.D., Miller V.L. Proteolytic processing of the Yersinia pestis YapG autotransporter by the omptin protease Pla and the contribution of YapG to murine plague pathogenesis. J. Med. Microbiol. 2013; 62(Pt8):1124–34. DOI: 10.1099/jmm.0.056275-0.

24. Lawrenz M.B., Lenz J.D, Miller V.L. A Novel Autotransporter adhesin is required for efficient colonization during bubonic plague. Infect. Immun. 2009; 77(1):317–26. DOI:10.1128/ IAI.01206-08.

25. Lawrenz M.B., Pennington J., Miller V.L. Acquisition of omptin reveals cryptic virulence function of autotransporter YapE in Yersinia pestis. Mol. Microbiol. 2013; 89(2):276–87. DOI:10.1111/ mmi.12273.

26. Lenz J.D., Lawrenz M.B., Cotter D.G., Lane M.C., Gonzalez R.J., Palacios M., Miller V.L. Expression during host in- fection and localization of Yersinia pestis autotransporter proteins. J. Bacteriol. 2011; 193(21):5936–49. DOI:10.1128/JB.05877-11.

27. Lenz J.D., Temple B., Miller V.L. Evolution and viru- lence contributions of the autotransporter proteins YapJ and YapK of Yersinia pestis CO92 and their homologs in Y. pseudotuberculo- sis IP32953. Infect. Immun. 2012; 80(10):3693–705. DOI:10.1128/ IAI.00529-12.

28. Leo J.C., Grin I., Linke D. Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Phil. Trans. R. Soc. B. Biol. Sci. 2012; 367(1592):1088–101. DOI:10.1098/ rstb.2011.0208.

29. Leo J.C., Oberhettinger P, Schütz M, Linke D. The in- verse autotransporter family: intimin, invasin and related proteins. Int. J. Med. Microbiol. 2015; 305(2):276–82. DOI: 10.1016/j. ijmm.2014.12.011.

30. Leo J.C., Oberhettinger P., Chaubey M., Schütz M., Kühner D., Bertsche U., Schwarz H., Götz F., Autenrieth I.B., Coles M., Linke D. The intimin periplasmic domain mediates dimerisation and binding to peptidoglycan. Mol. Microbiol. 2015; 95(1):80–100. DOI: 10.1111/mmi.12840.

31. Lindler L.E., Klempner M.S., Straley S.C. Yersinia pestis pH6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague. Infect. Immun. 1990; 58(8):2569–77.

32. Lindler L., Tall B. Yersinia pestis pH6 antigen forms fimbriae and is induced by intracellular association with macrophages. Mol. Microbiol. 1993; 8(2):311–24.

33. Liu F., Chen H., Galvan E.M., Lasaro M.A., Schifferli D.M. Effects of Psa and F1 on the adhesive and invasive interactions of Yersinia pestis with human respiratory tract epithelial cells. Infect. Immun. 2006; 74(10):5636–44. DOI: 10.1128/IAI.00612-06.

34. Liu H., Wang H., Qiu J., Wang X., Guo Z., Qiu Y., Zhou D., Han Y., Du Z., Li C., Song Y., Yang R. Transcriptional profiling of a mice plague model: insights into interaction between Yersinia pestis and its host. J. Basic. Microbiol. 2009; 49(1):92–9. DOI: 10.1002/ jobm.200800027.

35. Lobo L.A. Adhesive properties of the purified plasmino- gen activator Pla of Yersinia pestis. FEMS Microbiol. Lett. 2006; 262(2):158–62. DOI: 10.1111/j.1574-6968.2006.00382.x.

36. Makoveichuk E., Cherepanov P., Lundberg S., Forsberg A., Olivecrona G. pH6 antigen of Yersinia pestis interacts with plasma lipoproteins and cell membranes. J. Lipid. Res. 2003; 44(2):320–30. DOI: 10.1194/jlr.M200182-JLR200.

37. Mikula K.M., Kolodziejczyk R., Goldman A. Yersinia in- fection tools – characterization of structure and function of adhesions. Front. Cell Infect. Microbiol. 2013; 2(169):1–14. DOI: 10.3389/ fcimb.2012.00169.

38. Nair M.K., De Masi L., Yue M., Galván E.M., Chen H., Wang F., Schifferli D.M. Adheive properties of YapV and paralo- gous autotransporter proteins of Yersinia pestis. Infect. Immun. 2015; 83(5):1809–19. DOI: 10.1128/IAI.00094-15.

39. Payne D., Tatham D., Williamson D.E., Titball R.W. The pH6 antigen of Yersinia pestis binds to b1-linked galactosyl residues in glycosphingolipids. Infect. Immun. 1998; 66(9):4545–8.

40. Perry R.D., Fetherston J.D. Yersinia pestis – etiologic agent of plague. Clin. Microbiol. Rev. 1997; 10(1):35–66.

41. Plesniak L.A., Mahalakshmi R., Rypien C., Yang Y., Racic J., Marassi F.M. Expression, refolding, and initial structural characterization of the Y. pestis Ail outer membrane protein in lip- ids. Biochim. Biophys. Acta. 2011; 1808(1):482–9. DOI: 10.1016/j. bbamem.2010.09.017.

42. Seo S.K., Kim J.W., Park J.Y., Viall A.K., Minnich S.S., Rohde H.N., Schnider D.R., Lim S.Y., Hong J.B., Hinnebusch B.J., O’Loughlin J.L., Deobald C.F., Bohach G.A., Hovde C.J., Minnichb S.A. Role of a new intimin/invasin-like protein in Yersinia pes- tis virulence. Infect. Immun. 2012; 80(10):3559–69. DOI:10.1128/ IAI.00294-12.

43. Touchman J.W., Wagner D.M., Hao J., Mastrian S.D., Shah M.K., Vogler A.J., Allender C.J., Clark E.A., Benitez D.S., Youngkin D.J., Girard D.J., Auerbach R.K., Beckstrom-Sternberg S.M., Keim P. A North American Yersinia pestis draft genome sequence: SNPs and phylogenetic analysis. PLoS One. 2007; 2(2):e220. DOI: 10.1371/ journal.pone.0000220.

44. Tsang T.M., Annis D.S., Kronshage M., Fenno J.T., Usselman L.D., Mosher D.F., Krukonis E.S. Ail protein binds ninth type III fibronectin repeat (9FNIII) within central 120-kDa region of fibronectin to facilitate cell binding by Yersinia pestis. J. Biol. Chem. 2012; 287(20):16759–67. DOI: 10.1074/jbc.M112.358978.

45. Tsang T.M. Wiese J.S., Felek S., Kronshage M., Krukonis E.S. Ail proteins of Yersinia pestis and Y. pseudotuberculosis have different cell binding and invasion activities. PLoS One. 2013; 8(12):e83621. DOI: 10.1371/journal.pone.0083621.

46. Tsai J.C., Yen M.R., Castillo R., Leyton D.L., Henderson I.R., Saier M.H. Jr. The bacterial intimins and invasins: a large and novel family of secreted proteins. PLoS One. 2010; 5(12):e14403. DOI: 10.1371/journal.pone.0014403.

47. Uittenbogaard A.M., Myers-Morales T., Gorman A.A. Welsh E., Wulff C., Hinnebusch B.J., Korhonen T.K., Straley S.C. Temperature-dependence of yadBC phenotypes in Yersinia pestis. Microbiology 2014; 160(Pt.2):396–405. DOI: 10.1099/ mic.0.073205-0.

48. Yamashita S., Lukacik P., Barnard T.J., Noinaj N., Felek S., Tsang T.M., Krukonis E.S., Hinnebusch B.J., Buchanan S. Structural insights into Ail-mediated adhesion in Yersinia pestis. Structure. 2011; 19(11):1672–82. DOI: 10.1016/j.str.2011.08.010.

49. Yen Y.T., Karkal A., Bhattacharya M., Fernandez R.C., Stathopoulos C. Identification and characterization of autotransport- er proteins of Yersinia pestis KIM. Mol. Membr. Biol., 2007; 24(1): 28–40. DOI: 10.1080/09687860600927626.

50. Zav’yalov V.P. Fimbrial polyadhesins: anti-immune arma- ment of Yersinia. Adv. Exp. Med. Biol. 2012;.954:183–201. DOI: 10.1007/978-1-4614-3561-7_24.


Рецензия

Для цитирования:


Куклева Л.М. Адгезины возбудителя чумы. Проблемы особо опасных инфекций. 2018;(2):14-22. https://doi.org/10.21055/0370-1069-2018-2-14-22

For citation:


Kukleva L.M. Adhesines of the Plague Agent. Problems of Particularly Dangerous Infections. 2018;(2):14-22. (In Russ.) https://doi.org/10.21055/0370-1069-2018-2-14-22

Просмотров: 1017


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)